To obtain strong convergence rates of numerical schemes, an overwhelming majority of existing works impose a global monotonicity condition on coefficients of SDEs. On the contrary, a majority of SDEs from applications do not have globally monotone coefficients. As a recent breakthrough, the authors of [Hutzenthaler, Jentzen, Ann. Probab., 2020] originally presented a perturbation theory for stochastic differential equations (SDEs), which is crucial to recovering strong convergence rates of numerical schemes in a non-globally monotone setting. However, only a convergence rate of order $1/2$ was obtained there for time-stepping schemes such as a stopped increment-tamed Euler-Maruyama (SITEM) method. As an open problem, a natural question was raised by the aforementioned work as to whether higher convergence rate than $1/2$ can be obtained when higher order schemes are used. The present work attempts to solve the tough problem. To this end, we develop some new perturbation estimates that are able to reveal the order-one strong convergence of numerical methods. As the first application of the newly developed estimates, we identify the expected order-one pathwise uniformly strong convergence of the SITEM method for additive noise driven SDEs and multiplicative noise driven second order SDEs with non-globally monotone coefficients. As the other application, we propose and analyze a positivity preserving explicit Milstein-type method for Lotka-Volterra competition model driven by multi-dimensional noise, with a pathwise uniformly strong convergence rate of order one recovered under mild assumptions. These obtained results are completely new and significantly improve the existing theory. Numerical experiments are also provided to confirm the theoretical findings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员