As distributed energy resources (DERs) proliferate, future power system will need new market platforms enabling prosumers to trade various electricity and grid-support products. However, prosumers often exhibit complex, product interdependent preferences and face limited cognitive and computational resources, hindering engagement with complex market structures and bid formats. We address this challenge by introducing a multi-product market that allows prosumers to express complex preferences through an intuitive format, by fusing combinatorial clock exchange and machine learning (ML) techniques. The iterative mechanism only requires prosumers to report their preferred package of products at posted prices, eliminating the need for forecasting product prices or adhering to complex bid formats, while the ML-aided price discovery speeds up convergence. The linear pricing rule further enhances transparency and interpretability. Finally, numerical simulations demonstrate convergence to clearing prices in approximately 15 clock iterations.
翻译:暂无翻译