Continuous casting is a widely adopted process in the steel industry, where maintaining high steel quality is paramount. Efficient prediction of grade intermixing during ladle changeover operations is critical for maintaining steel quality and minimizing material losses in the continuous casting process. Among various factors influencing grade intermixing, operating parameters play a significant role, in addition to tundish geometry and flow control devices. In this study, three-dimensional, transient, two-phase turbulent flow simulations are conducted to investigate the ladle changeover operation. During this process, the molten steel level in the tundish typically varies over time, significantly affecting the grade intermixing phenomena. The influence of ladle change time on intermixing time has been presented. However, high-fidelity full-order simulations of such complex transient phenomena are computationally expensive and are impractical for real-time monitoring or design-space exploration in industrial-scale applications. To address this issue, a reduced order modelling approach based on proper orthogonal decomposition (POD) and reservoir computing (RC) is employed to efficiently predict intermixing time. The proposed reduced order model (ROM) demonstrates excellent predictive accuracy using limited training data while requiring significantly less computational resources and training time. The results demonstrate the potential of the proposed methodology as a fast, reliable tool for real-time process monitoring and optimization in industrial continuous casting operations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
Arxiv
10+阅读 · 2018年2月9日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
Arxiv
10+阅读 · 2018年2月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员