We revisit the direct sum questions in communication complexity which asks whether the resource needed to solve $n$ communication problems together is (approximately) the sum of resources needed to solve these problems separately. Our work starts with the observation that Dinur and Meir's fortification lemma can be generalized to a general fortification lemma for a sub-additive measure over set. By applying this lemma to the case of cover number, we obtain a dual form of cover number, called "$\delta$-fooling set" which is a generalized fooling set. Any rectangle which contains enough number of elements from a $\delta$-fooling set can not be monochromatic. With this fact, we are able to reprove the classic direct sum theorem of cover number with a simple double counting argument. Formally, let $S \subseteq (A\times B) \times O$ and $T \subseteq (P\times Q) \times Z$ be two communication problems, $ \log \mathsf{Cov}\left(S\times T\right) \geq \log \mathsf{Cov}\left(S\right) + \log\mathsf{Cov}(T) -\log\log|P||Q|-4.$ where $\mathsf{Cov}$ denotes the cover number. One issue of current deterministic direct sum theorems about communication complexity is that they provide no information when $n$ is small, especially when $n=2$. In this work, we prove a new direct sum theorem about protocol size which imply a better direct sum theorem for two functions in terms of protocol size. Formally, let $\mathsf{L}$ denotes complexity of the protocol size of a communication problem, given a communication problem $F:A \times B \rightarrow \{0,1\}$, $ \log\mathsf{L}\left(F\times F\right)\geq \log \mathsf{L}\left(F\right) +\Omega\left(\sqrt{\log\mathsf{L}\left(F\right)}\right)-\log\log|A||B| -4$. All our results are obtained in a similar way using the $\delta$-fooling set to construct a hardcore for the direct sum problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月28日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年11月28日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员