A well-known testing method for the safety evaluation and real-time validation of automotive software systems (ASSs) is Fault Injection (FI). In accordance with the ISO 26262 standard, the faults are introduced artificially for the purpose of analyzing the safety properties and verifying the safety mechanisms during the development phase. However, the current FI method and tools have a significant limitation in that they require manual identification of FI attributes, including fault type, location and time. The more complex the system, the more expensive, time-consuming and labour-intensive the process. To address the aforementioned challenge, a novel Large Language Models (LLMs)-assisted fault test cases (TCs) generation approach for utilization during real-time FI tests is proposed in this paper. To this end, considering the representativeness and coverage criteria, the applicability of various LLMs to create fault TCs from the functional safety requirements (FSRs) has been investigated. Through the validation results of LLMs, the superiority of the proposed approach utilizing gpt-4o in comparison to other state-of-the-art models has been demonstrated. Specifically, the proposed approach exhibits high performance in terms of FSRs classification and fault TCs generation with F1-score of 88% and 97.5%, respectively. To illustrate the proposed approach, the generated fault TCs were executed in real time on a hardware-in-the-loop system, where a high-fidelity automotive system model served as a case study. This novel approach offers a means of optimizing the real-time testing process, thereby reducing costs while simultaneously enhancing the safety properties of complex safety-critical ASSs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

它的目的是理解计算的本质,并因此提供更有效的方法。所有介绍或研究数学、逻辑和形式概念和方法的论文都是受欢迎的,前提是它们的动机显然来自计算领域。理论计算机科学发表的论文按其性质分为三个部分。第一部分“算法,自动机,复杂性和游戏”致力于研究算法及其复杂性,使用分析,组合或概率的方法。它包括抽象复杂性的整个领域(即,所有可以使用图灵机器定义的层次结构的结果)、自动机和语言理论的整个领域(包括无限词和无限语言的自动机),整个几何(图形)应用领域和使用统计方法测量系统性能的整个领域。官网链接:https://www.sciencedirect.com/journal/theoretical-computer-science/about/aims-and-scope
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员