Airdrops are used by blockchain applications and platforms to attract an initial user base, and to grow the user base over time. In the case of many airdrops, tokens are distributed to select users as a "reward" for interacting with the underlying platform, with a long-term goal of creating a loyal community that will generate genuine economic activity well after the airdrop has been completed. Although airdrops are widely used by the blockchain industry, a proper understanding of the factors contributing to an airdrop's success is generally lacking. In this work, we outline the design space for airdrops, and specify a reasonable list of outcomes that an airdrop should ideally result in. We then analyze on-chain data from several larger-scale airdrops to empirically evaluate the success of previous airdrops, with respect to our desiderata. In our analysis, we demonstrate that airdrop farmers frequently dispose of the lion's share of airdrops proceeds via exchanges. Our analysis is followed by an overview of common pitfalls that common airdrop designs lend themselves to, which are then used to suggest concrete guidelines for better airdrops.


翻译:暂无翻译

0
下载
关闭预览

相关内容

AirDrop是苹果的操作系统iOS和OS X的一项功能,可让电脑和移动设备通过Wi-Fi Direct与其他启用了AirDrop 功能的设备共享文件,本功能在Mac OS X 10.7 "Lion"中首次出现。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员