We introduce graph width parameters, called $\alpha$-edge-crossing width and edge-crossing width. These are defined in terms of the number of edges crossing a bag of a tree-cut decomposition. They are motivated by edge-cut width, recently introduced by Brand et al. (WG 2022). We show that edge-crossing width is equivalent to the known parameter tree-partition-width. On the other hand, $\alpha$-edge-crossing width is a new parameter; tree-cut width and $\alpha$-edge-crossing width are incomparable, and they both lie between tree-partition-width and edge-cut width. We provide an algorithm that, for a given $n$-vertex graph $G$ and integers $k$ and $\alpha$, in time $2^{O((\alpha+k)\log (\alpha+k))}n^2$ either outputs a tree-cut decomposition certifying that the $\alpha$-edge-crossing width of $G$ is at most $2\alpha^2+5k$ or confirms that the $\alpha$-edge-crossing width of $G$ is more than $k$. As applications, for every fixed $\alpha$, we obtain FPT algorithms for the List Coloring and Precoloring Extension problems parameterized by $\alpha$-edge-crossing width. They were known to be W[1]-hard parameterized by tree-partition-width, and FPT parameterized by edge-cut width, and we close the complexity gap between these two parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
3+阅读 · 2022年10月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月12日
VIP会员
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
3+阅读 · 2022年10月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员