This paper considers an infinitely repeated three-player Bayesian game with lack of information on two sides, in which an informed player plays two zero-sum games simultaneously at each stage against two uninformed players. This is a generalization of the Aumann et al. [1] two-player zero-sum one-sided incomplete information model. Under a correlated prior, the informed player faces the problem of how to optimally disclose information among two uninformed players in order to maximize his long-term average payoffs. Our objective is to understand the adverse effects of \information spillover" from one game to the other in the equilibrium payoff set of the informed player. We provide conditions under which the informed player can fully overcome such adverse effects and characterize equilibrium payoffs. In a second result, we show how the effects of information spillover on the equilibrium payoff set of the informed player might be severe.


翻译:本文审议了一个无限重复的三玩家贝叶西亚游戏,其中双方缺乏信息,知情玩家在每个阶段对两个不知情玩家同时玩两场零和游戏。这是对Aumann等人(Aumann et al.) [1] 的一般信息模式[1] 双玩家零和单向不完全信息模式。在一个相关之前,知情玩家面临如何在两个不知情玩家之间最佳披露信息以最大限度地实现他的长期平均回报的问题。我们的目标是理解在知情玩家的均衡报酬设置中,\信息从一个游戏向另一个游戏溢出的不利影响。我们提供了条件,让知情玩家能够完全克服这种不利影响并描述平衡报酬。在第二个结果中,我们展示信息溢出对知情玩家平衡报酬组合的影响如何严重。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2021年4月13日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
14+阅读 · 2020年12月17日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员