In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss multinomial logistic regression models. Unlike the binomial regression case, we show through an example that the Jeffreys-prior penalty term does not necessarily diverge to negative infinity as the parameter diverges.


翻译:在逻辑回归建模中,Firth 修改的估计器被广泛用于解决数据分离问题,该问题导致最大似然估计不存在。Firth 修改的估计器可以被公式化为一个惩罚的最大似然估计量,其中采用 Jeffreys 先验作为惩罚项。尽管在实践中广泛使用,但相应估计存在性的正式验证尚未确立。在本研究中,我们在假定设计矩阵具有完整列秩的情况下,建立了二项逻辑回归模型中 Firth 修改的估计存在定理。我们还讨论了多项逻辑回归模型。与二项回归情况不同,我们通过一个例子展示,Jeffreys 先验惩罚项不一定会随着参数的发散而发散到负无穷。

0
下载
关闭预览

相关内容

逻辑回归(也称“对数几率回归”)(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。在统计学中,logistic模型(或logit模型)用于对存在的某个类或事件的概率建模,例如通过/失败、赢/输、活着/死了或健康/生病。这可以扩展到建模若干类事件,如确定一个图像是否包含猫、狗、狮子等。图像中检测到的每个物体的概率都在0到1之间,其和为1。
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员