The local convergence of an inexact Newton method is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property which is explored as well. Under suitable conditions and without any additional geometric assumptions, local convergence results with linear and quadratic rate and a semi-local convergence result are obtained for the proposed method. Finally, the theory can be applied to problems of finding a singularity of the sum of two vector fields.


翻译:本文研究了在Riemann流形上使用度量正则性性质求解广义方程的不精确Newton方法的局部收敛性。在适当条件下且不需要额外的几何假设下,本文得到了这种方法的局部收敛结果,包括线性和二次收敛率以及半局部收敛结果。最后,该理论可应用于求解两个向量场的奇点问题。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员