We consider rather general structural equation models (SEMs) between a target and its covariates in several shifted environments. Given $k\in\mathbb{N}$ shifts we consider the set of shifts that are at most $\gamma$-times as strong as a given weighted linear combination of these $k$ shifts and the worst (quadratic) risk over this entire space. This worst risk has a nice decomposition which we refer to as the "worst risk decomposition". Then we find an explicit arg-min solution that minimizes the worst risk and consider its corresponding plug-in estimator which is the main object of this paper. This plug-in estimator is (almost surely) consistent and we first prove a concentration in measure result for it. The solution to the worst risk minimizer is rather reminiscent of the corresponding ordinary least squares solution in that it is product of a vector and an inverse of a Grammian matrix. Due to this, the central moments of the plug-in estimator is not well-defined in general, but we instead consider these moments conditioned on the Grammian inverse being bounded by some given constant. We also study conditional variance of the estimator with respect to a natural filtration for the incoming data. Similarly we consider the conditional covariance matrix with respect to this filtration and prove a bound for the determinant of this matrix. This SEM model generalizes the linear models that have been studied previously for instance in the setting of casual inference or anchor regression but the concentration in measure result and the moment bounds are new even in the linear setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员