Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员