Low-power Internet of Things (IoT) technologies are becoming increasingly important in engineering education as a tool to help students connect theory to real applications. However, many institutions face barriers that slow down their adoption in courses and labs. This paper reviews recent studies to understand these barriers and organizes them into three groups: technical, organizational, and curricular/pedagogical. Technical barriers include energy management, scalability, and integration issues. Organizational barriers are related to cost, planning, and the need for trained staff. Curricular and pedagogical barriers include gaps in student readiness, limited lab time, and platform choices that depend on budget. By detailing these barriers with practical examples, this paper aims to help educators and academic leaders develop more effective strategies to adopt low-power IoT in engineering programs.
翻译:暂无翻译