Inspired by the concept of fault tolerance quantum computation, this article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption. The introduction of quantum gates is a critical step in constructing the message encryption and the computation encryption within the framework. Of significance is that both encryptions are respectively accomplished in a multivariate polynomial set generated by quantum gates. Two fundamental traits of quantum gates, the invertibility and the noncommutativity, establish the success of EHE. The employment of invertible gates allows exact decryptions for both an encrypted message and encrypted computation. The encrypted computation is exact as well because its encryption transformation is conducted with invertible gates. The second trait of noncommutativity among applied quantum gates brings forth the security for the two encryptions. In the message encryption, a plaintext is encoded into a ciphertext via a polynomial set generated by a product of noncommuting gates randomly chosen. Toward the computation encryption, a desired operation is encoded into an encrypted polynomial set generated by another product of noncommuting gates. The encrypted computation is then the evaluation of the encrypted polynomial set on the ciphertext and is referred to as the cryptovaluation. EHE is not only attainable on quantum computers, but also straightforwardly realizable on traditional computing environments. Surpassing the standard security 2^128 of quantum resilience, both the encryptions further reach a security greater than the suggested threshold 2^1024 and are characterized as hyper quantum-resilient. Thanks to the two essential traits of quantum gates, this framework can be regarded as the initial tangible manifestation of the concept noncommutative cryptography.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月27日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员