We present a new approximation algorithm for the treewidth problem which finds an upper bound on the treewidth and constructs a corresponding tree decomposition as well. Our algorithm is a faster variation of Reed's classical algorithm. For the benefit of the reader, and to be able to compare these two algorithms, we start with a detailed time analysis of Reed's algorithm. We fill in many details that have been omitted in Reed's paper. Computing tree decompositions parameterized by the treewidth $k$ is fixed parameter tractable (FPT), meaning that there are algorithms running in time $\mathcal{O}(f(k) g(n))$ where $f$ is a computable function, and $g(n)$ is polynomial in $n$, where $n$ is the number of vertices. An analysis of Reed's algorithm shows $f(k) = 2^{\mathcal{O}(k \log k)}$ and $g(n) = n \log n$ for a 5-approximation. Reed simply claims time $\mathcal{O}(n \log n)$ for bounded $k$ for his constant factor approximation algorithm, but the bound of $2^{\Omega(k \log k)} n \log n$ is well known. From a practical point of view, we notice that the time of Reed's algorithm also contains a term of $\mathcal{O}(k^2 2^{24k} n \log n)$, which for small $k$ is much worse than the asymptotically leading term of $2^{\mathcal{O}(k \log k)} n \log n$. We analyze $f(k)$ more precisely, because the purpose of this paper is to improve the running times for all reasonably small values of $k$. Our algorithm runs in $\mathcal{O}(f(k)n\log{n})$ too, but with a much smaller dependence on $k$. In our case, $f(k) = 2^{\mathcal{O}(k)}$. This algorithm is simple and fast, especially for small values of $k$. We should mention that Bodlaender et al. [2016] have an algorithm with a linear dependence on $n$, and Korhonen [2021] obtains the much better approximation ratio of 2, while the current paper achieves a better dependence on $k$.


翻译:我们为树枝问题提出了一个更差的近似算法, 它在树枝上找到一个上限, 并构建了相应的树分解值。 我们的算法是Reed经典算法的更快捷的变异。 为了读者的利益, 为了能够比较这两种算法, 我们先对 Reed 的算法进行详细的时间分析。 我们填写了 Reed 文件中忽略的许多细节。 由树枝上找到一个上限的nk$的分解参数是固定的参数( FPT ), 意思是, 在时间上运行的 $ 2, (k) 美元, 也就是 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 也 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。 。 。 。 。 。 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员