Indirect reciprocity is a mechanism that explains large-scale cooperation in human societies. In indirect reciprocity, an individual chooses whether or not to cooperate with another based on reputation information, and others evaluate the action as good or bad. Under what evaluation rule (called ``social norm'') cooperation evolves has long been of central interest in the literature. It has been reported that if individuals can share their evaluations (i.e., public reputation), social norms called ``leading eight'' can be evolutionarily stable. On the other hand, when they cannot share their evaluations (i.e., private assessment), the evolutionary stability of cooperation is still in question. To tackle this problem, we create a novel method to analyze the reputation structure in the population under private assessment. Specifically, we characterize each individual by two variables, ``goodness'' (what proportion of the population considers the individual as good) and ``self-reputation'' (whether an individual thinks of him/herself as good or bad), and analyze the stochastic process of how these two variables change over time. We discuss evolutionary stability of each of the leading eight social norms by studying the robustness against invasions of unconditional cooperators and defectors. We identify key pivots in those social norms for establishing a high level of cooperation or stable cooperation against mutants. Our finding gives an insight into how human cooperation is established in a real-world society.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员