We present an online semantic object mapping system for a quadruped robot operating in real indoor environments, turning sensor detections into named objects in a global map. During a run, the mapper integrates range geometry with camera detections, merges co-located detections within a frame, and associates repeated detections into persistent object instances across frames. Objects remain in the map when they are out of view, and repeated sightings update the same instance rather than creating duplicates. The output is a compact object layer that can be queried (class, pose, and confidence), is integrated with the occupancy map and readable by a planner. In on-robot tests, the layer remained stable across viewpoint changes.
翻译:暂无翻译