Big time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in various environments. Significant insights can be gained by mining temporal patterns from these time series. Temporal pattern mining (TPM) extends traditional pattern mining by adding event time intervals into extracted patterns, making them more expressive at the expense of increased time and space complexities. Besides frequent temporal patterns (FTPs), which occur frequently in the entire dataset, another useful type of temporal patterns are so-called rare temporal patterns (RTPs), which appear rarely but with high confidence. Mining rare temporal patterns yields additional challenges. For FTP mining, the temporal information and complex relations between events already create an exponential search space. For RTP mining, the support measure is set very low, leading to a further combinatorial explosion and potentially producing too many uninteresting patterns. Thus, there is a need for a generalized approach which can mine both frequent and rare temporal patterns. This paper presents our Generalized Temporal Pattern Mining from Time Series (GTPMfTS) approach with the following specific contributions: (1) The end-to-end GTPMfTS process taking time series as input and producing frequent/rare temporal patterns as output. (2) The efficient Generalized Temporal Pattern Mining (GTPM) algorithm mines frequent and rare temporal patterns using efficient data structures for fast retrieval of events and patterns during the mining process, and employs effective pruning techniques for significantly faster mining. (3) An approximate version of GTPM that uses mutual information, a measure of data correlation, to prune unpromising time series from the search space.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员