This paper describes the UZH-CL system submitted to the FAME2026 Challenge. The challenge focuses on cross-modal verification under unique multilingual conditions, specifically unseen and unheard languages. Our approach investigates two distinct architectures, consisting of a baseline dual-encoder system trained from scratch using contrastive and orthogonal projection losses, and a foundation model approach leveraging ImageBind with LoRA. To address the data scarcity and language constraints of the challenge, we curated an external Arabic dataset from VoxBlink. Our best-performing system, ImageBind-LoRA, demonstrates remarkable cross-lingual generalization: despite being fine-tuned exclusively on Arabic audio, it achieved an EER of 24.73% on the evaluation set (English and German), securing 2nd place in the competition.


翻译:本文介绍了提交至FAME2026挑战赛的UZH-CL系统。该挑战赛聚焦于独特多语言条件下的跨模态验证,特别是针对未见及未闻的语言。我们的方法研究了两种不同的架构:一种是从零开始训练、采用对比损失与正交投影损失的双编码器基线系统;另一种是基于ImageBind结合LoRA的基础模型方案。为应对挑战赛中数据稀缺与语言限制的问题,我们从VoxBlink中构建了外部阿拉伯语数据集。性能最佳的系统ImageBind-LoRA展现出卓越的跨语言泛化能力:尽管仅使用阿拉伯语音频进行微调,其在评估集(英语与德语)上实现了24.73%的等错误率,最终在竞赛中获得第二名。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员