When translating a term calculus into a graphical formalism many inessential details are abstracted away. In the case of $\lambda$-calculus translated to proof-nets, these inessential details are captured by a notion of equivalence on $\lambda$-terms known as $\simeq_\sigma$-equivalence, in both the intuitionistic (due to Regnier) and classical (due to Laurent) cases. The purpose of this paper is to uncover a strong bisimulation behind $\simeq_\sigma$-equivalence, as formulated by Laurent for Parigot's $\lambda\mu$-calculus. This is achieved by introducing a relation $\simeq$, defined over a revised presentation of $\lambda\mu$-calculus we dub $\Lambda M$. More precisely, we first identify the reasons behind Laurent's $\simeq_\sigma$-equivalence on $\lambda\mu$-terms failing to be a strong bisimulation. Inspired by Laurent's \emph{Polarized Proof-Nets}, this leads us to distinguish multiplicative and exponential reduction steps on terms. Second, we enrich the syntax of $\lambda\mu$ to allow us to track the exponential operations. These technical ingredients pave the way towards a strong bisimulation for the classical case. We introduce a calculus $\Lambda M$ and a relation $\simeq$ that we show to be a strong bisimulation with respect to reduction in $\Lambda M$, ie. two $\simeq$-equivalent terms have the exact same reduction semantics, a result which fails for Regnier's $\simeq_\sigma$-equivalence in $\lambda$-calculus as well as for Laurent's $\simeq_\sigma$-equivalence in $\lambda\mu$. Although $\simeq$ is formulated over an enriched syntax and hence is not strictly included in Laurent's $\simeq_\sigma$, we show how it can be seen as a restriction of it.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月26日
Arxiv
0+阅读 · 2024年3月22日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员