Current machine learning models produce outstanding results in many areas but, at the same time, suffer from shortcut learning and spurious correlations. To address such flaws, the explanatory interactive machine learning (XIL) framework has been proposed to revise a model by employing user feedback on a model's explanation. This work sheds light on the explanations used within this framework. In particular, we investigate simultaneous model revision through multiple explanation methods. To this end, we identified that \textit{one explanation does not fit XIL} and propose considering multiple ones when revising models via XIL.


翻译:当前的机器学习模型在许多领域中都产生了卓越的效果,但同时也存在捷径学习和伪相关性的问题。为了解决这些缺陷,提出了解释性交互式机器学习(XIL)框架,通过采用用户对模型解释的反馈来修正模型。本文阐明了在该框架内使用的解释方法。我们特别研究了多重解释方法在联合学习中的应用。因此,我们确定了“XIL框架并非万能药”的观点,并建议在通过XIL修正模型时考虑多重解释。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员