When estimating causal effects from observational studies, researchers often need to adjust for many covariates to deconfound the non-causal relationship between exposure and outcome, among which many covariates are discrete. The behavior of commonly used estimators in the presence of many discrete covariates is not well understood since their properties are often analyzed under structural assumptions including sparsity and smoothness, which do not apply in discrete settings. In this work, we study the estimation of causal effects in a model where the covariates required for confounding adjustment are discrete but high-dimensional, meaning the number of categories $d$ is comparable with or even larger than sample size $n$. Specifically, we show the mean squared error of commonly used regression, weighting and doubly robust estimators is bounded by $\frac{d^2}{n^2}+\frac{1}{n}$. We then prove the minimax lower bound for the average treatment effect is of order $\frac{d^2}{n^2 \log^2 n}+\frac{1}{n}$, which characterizes the fundamental difficulty of causal effect estimation in the high-dimensional discrete setting, and shows the estimators mentioned above are rate-optimal up to log-factors. We further consider additional structures that can be exploited, namely effect homogeneity and prior knowledge of the covariate distribution, and propose new estimators that enjoy faster convergence rates of order $\frac{d}{n^2} + \frac{1}{n}$, which achieve consistency in a broader regime. The results are illustrated empirically via simulation studies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员