In this work, we propose a new way to (non-interactively, verifiably) demonstrate Quantum Advantage by solving the average-case $\mathsf{NP}$ search problem of finding a solution to a system of (underdetermined) multivariate quadratic equations over the finite field $\mathbb{F}_2$ drawn from a specified distribution. In particular, we design a distribution of degree-2 polynomials $\{p_i(x_1,\ldots,x_n)\}_{i\in [m]}$ for $m<n$ over $\mathbb{F}_2$ for which we show that there is a quantum polynomial-time algorithm that simultaneously solves $\{p_i(x_1,\ldots,x_n)=y_i\}_{i\in [m]}$ for a random vector $(y_1,\ldots,y_m)$. On the other hand, while a solution exists with high probability, we conjecture that it is classically hard to find one based on classical cryptanalysis that we provide, including a comprehensive review of all known relevant classical algorithms for solving multivariate quadratics. Our approach proceeds by examining the Yamakawa-Zhandry (FOCS 2022) quantum advantage scheme and replacing the role of the random oracle with our multivariate quadratic equations. Our work therefore gives several new perspectives: First, our algorithm gives a counterexample to the conventional belief that generic classically hard multivariate quadratic systems are also quantumly hard. Second, based on cryptanalytic evidence, our work gives an explicit simple replacement for the random oracle from the work of Yamakawa and Zhandry. We show how to instantiate the random oracle with families of just degree two multivariate polynomials over $\mathbb{F}_2$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员