Generative Artificial Intelligence models, such as Large Language Models (LLMs) and Large Vision Models (VLMs), exhibit state-of-the-art performance but remain vulnerable to hardware-based threats, specifically bit-flip attacks (BFAs). Existing BFA discovery methods lack generalizability and struggle to scale, often failing to analyze the vast parameter space and complex interdependencies of modern foundation models in a reasonable time. This paper proposes FlipLLM, a reinforcement learning (RL) architecture-agnostic framework that formulates BFA discovery as a sequential decision-making problem. FlipLLM combines sensitivity-guided layer pruning with Q-learning to efficiently identify minimal, high-impact bit sets that can induce catastrophic failure. We demonstrate the effectiveness and generalizability of FlipLLM by applying it to a diverse set of models, including prominent text-only LLMs (GPT-2 Large, LLaMA 3.1 8B, and DeepSeek-V2 7B), VLMs such as LLaVA 1.6, and datasets, such as MMLU, MMLU-Pro, VQAv2, and TextVQA. Our results show that FlipLLM can identify critical bits that are vulnerable to BFAs up to 2.5x faster than SOTA methods. We demonstrate that flipping the FlipLLM-identified bits plummets the accuracy of LLaMA 3.1 8B from 69.9% to ~0.2%, and for LLaVA's VQA score from 78% to almost 0%, by flipping as few as 5 and 7 bits, respectively. Further analysis reveals that applying standard hardware protection mechanisms, such as ECC SECDED, to the FlipLLM-identified bit locations completely mitigates the BFA impact, demonstrating the practical value of our framework in guiding hardware-level defenses. FlipLLM offers the first scalable and adaptive methodology for exploring the BFA vulnerability of both language and multimodal foundation models, paving the way for comprehensive hardware-security evaluation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员