We propose a framework for saliency-based, multi-target detection and segmentation of circular-scan, synthetic-aperture-sonar (CSAS) imagery. Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN). The encoder portion of the MB-CEDN extracts visual contrast features from CSAS images. These features are fed into dual decoders that perform pixel-level segmentation to mask targets. Each decoder provides different perspectives as to what constitutes a salient target. These opinions are aggregated and cascaded into a deep-parsing network to refine the segmentation. We evaluate our framework using real-world CSAS imagery consisting of five broad target classes. We compare against existing approaches from the computer-vision literature. We show that our framework outperforms supervised, deep-saliency networks designed for natural imagery. It greatly outperforms unsupervised saliency approaches developed for natural imagery. This illustrates that natural-image-based models may need to be altered to be effective for this imaging-sonar modality.


翻译:我们提议了一个框架,用于对循环扫描、合成光学-共振成像进行显性、多目标探测和分解。我们的框架依赖于一个多分支、革命编码器-解码器网络(MB-CEDN)。MB-CEDN的编码器部分从 CSAS 图像中提取了视觉对比特征。这些特征被输入到两个解码器中,这些解码器对遮盖目标进行像素级分解。每个解码器都对什么是突出目标提供了不同的观点。这些观点被汇总并嵌入一个深层次的分解网络,以完善分解。我们用由五大类目标组成的真实世界的CSAS图像来评估我们的框架。我们比较了计算机-视觉文献中的现有方法。我们显示,我们的框架超越了为自然图像设计的受监督、深层次的网络。它大大超越了为自然图像开发的不受监督的突出特征方法。这说明,基于自然模型可能需要加以修改,以便有效地使用这种成像-共振模式。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员