This study presents a computational framework for optimizing undulatory swimming profiles using a combination of design-by-morphing and Bayesian optimization strategies. The body deformation is expressed as a linear combination of five baseline bio-inspired profiles, including two unconventional shapes to enhance diversity in the design space. The optimization objective is to maximize propulsive efficiency over a wide range of frequency-wavelength combinations. The Arbitrary Lagrangian--Eulerian formulation is employed to simulate the unsteady flow around two-dimensional undulating swimmers. The optimized profile achieves a significantly improved efficiency of 82.4\%, while the second- and third-best profiles achieve efficiencies of 51.8\% and 42.8\%, respectively, outperforming the benchmark anguilliform and carangiform profiles by leveraging advantageous surface stress distributions and effective energy recovery mechanisms. A detailed force decomposition reveals that the optimal swimmer minimizes resistive drag and maximizes constructive work contributions, particularly in the anterior and posterior body regions. Spatial and temporal work decomposition indicates a strategic redistribution of input and recovered energy, enhancing performance while reducing energetic cost. The wake topology associated with the optimized swimmer exhibits organized and coherent vortex structures, reflecting superior fluid-structure interaction characteristics compared to conventional profiles. These findings demonstrate that morphing-based parametric design, when guided by surrogate-assisted optimization, offers a powerful framework for discovering energetically efficient swimming gaits, with significant implications for the design of autonomous underwater propulsion systems and the broader field of bio-inspired locomotion.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员