With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory compliance, and the administration of next-generation programmable networks.


翻译:随着越来越多的现有网络向软件定义网络(SDN)转型,这些网络需要更高的安全性,并需要更智能的流量控制方法。本研究提出的SmartSecChain-SDN是一个平台,它结合了基于机器学习的入侵检测、基于区块链的日志存储以及SDN网络中基于应用感知的优先级机制。为了在实时、精确且低误报率的设置下检测网络入侵,该框架应用了先进的机器学习算法,包括随机森林、XGBoost、CatBoost和CNN-BiLSTM。SmartSecChain-SDN基于许可区块链技术Hyperledger Fabric,提供安全、可扩展且保护隐私的存储,从而确保入侵检测系统(IDS)记录不可篡改并可进行全面分析。该系统还包含基于应用的QoS规则和流量整形功能,能够优先处理关键服务(如VoIP、视频会议和商业应用),同时降低非必要流量(如下载和更新)的优先级。Mininet用于对整个架构进行原型设计,因为它可以模拟实时SDN场景。该框架还与OpenDaylight和Ryu控制器兼容。通过使用InSDN数据集进行测试,证明该框架能够有效识别各类网络攻击,并在资源受限条件下高效处理带宽分配。SmartSecChain-SDN全面解决了SDN系统的保护、安全和增强问题。本研究提出了一种创新且可扩展的方法,以提升网络安全、法规遵从性以及对下一代可编程网络的管理能力。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员