Studies in circadian biology often use trigonometric regression to model phenomena over time. Ideally, protocols in these studies would collect samples at evenly distributed and equally spaced time points over a 24 hour period. This sample collection protocol is known as an equispaced design, which is considered the optimal experimental design for trigonometric regression under multiple statistical criteria. However, implementing equispaced designs in studies involving individuals is logistically challenging, and failure to employ an equispaced design could cause a loss of statistical power when performing hypothesis tests with an estimated model. This paper is motivated by the potential loss of statistical power during hypothesis testing, and considers a weighted trigonometric regression as a remedy. Specifically, the weights for this regression are the normalized reciprocals of estimates derived from a kernel density estimator for sample collection time, which inflates the weight of samples collected at underrepresented time points. A search procedure is also introduced to identify the concentration hyperparameter for kernel density estimation that maximizes the Hessian of weighted squared loss, which relates to both maximizing the $D$-optimality criterion from experimental design literature and minimizing the generalized variance. Simulation studies consistently demonstrate that this weighted regression mitigates variability in inferences produced by an estimated model. Illustrations with three real circadian biology data sets further indicate that this weighted regression consistently yields larger test statistics than its unweighted counterpart for first-order trigonometric regression, or cosinor regression, which is prevalent in circadian biology studies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员