In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs.


翻译:在过去几年里,在将公平要求纳入算法排级器方面做了大量工作,数据管理、算法、信息检索和建议系统界的贡献。在这次调查中,我们系统地概述了这项工作,提供了将各子领域正规化和算法方法联系起来的广泛观点。我们工作的一个重要贡献是围绕价值框架制定一个共同的叙述,鼓励在排名中采取具体的促进公平的措施。这使我们能够统一提出缓解目标和算法技术,以帮助实现这些目标或找出取舍。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
44+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
44+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员