This study aims to show the fundamental difference between logistic regression and Bayesian classifiers in the case of exponential and unexponential families of distributions, yielding the following findings. First, the logistic regression is a less general representation of a Bayesian classifier. Second, one should suppose distributions of classes for the correct specification of logistic regression equations. Third, in specific cases, there is no difference between predicted probabilities from correctly specified generative Bayesian classifier and discriminative logistic regression.


翻译:这项研究旨在显示物流回归和贝叶斯分类人员在分布分布的指数式和不富裕型群中的基本差异,得出以下结论:第一,物流回归是一个贝叶斯分类人员较不普遍的代表性;第二,应当设想为正确说明物流回归方程而分配的等级;第三,在具体情况下,预测的概率与正确指定的贝叶斯分类和歧视性的物流回归没有区别。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员