Automatic generation of loop invariants is a fundamental challenge in software verification. While this task is undecidable in general, it is decidable for certain restricted classes of programs. This work focuses on invariant generation for (branching-free) loops with a single linear update. Our primary contribution is a polynomial-space algorithm that computes the strongest algebraic invariant for simple linear loops, generating all polynomial equations that hold among program variables across all reachable states. The key to achieving our complexity bounds lies in mitigating the blowup associated with variable elimination and Gr\"obner basis computation, as seen in prior works. Our procedure runs in polynomial time when the number of program variables is fixed. We examine various applications of our results on invariant generation, focusing on invariant verification and loop synthesis. The invariant verification problem investigates whether a polynomial ideal defining an algebraic set serves as an invariant for a given linear loop. We show that this problem is coNP-complete and lies in PSPACE when the input ideal is given in dense or sparse representations, respectively. In the context of loop synthesis, we aim to construct a loop with an infinite set of reachable states that upholds a specified algebraic property as an invariant. The strong synthesis variant of this problem requires the construction of loops for which the given property is the strongest invariant. In terms of hardness, synthesising loops over integers (or rationals) is as hard as Hilbert's Tenth problem (or its analogue over the rationals). When loop constants are constrained to bit-bounded rational numbers, we demonstrate that loop synthesis and its strong variant are both decidable in PSPACE, and in NP when the number of program variables is fixed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员