We propose a general method for deep learning based point cloud analysis, which is invariant to rotation on the inputs. Classical methods are vulnerable to rotation, as they usually take aligned point clouds as input. Principle Component Analysis (PCA) is a practical approach to achieve rotation invariance. However, there are still some gaps between theory and practical algorithms. In this work, we present a thorough study on designing rotation invariant algorithms for point cloud analysis. We first formulate it as a permutation invariant problem, then propose a general framework which can be combined with any backbones. Our method is beneficial for further research such as 3D pre-training and multi-modal learning. Experiments show that our method has considerable or better performance compared to state-of-the-art approaches on common benchmarks. Code is available at https://github.com/luoshuqing2001/RI_framework.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员