News recommendation is critical for personalized news distribution. Federated news recommendation enables collaborative model learning from many clients without sharing their raw data. It is promising for privacy-preserving news recommendation. However, the security of federated news recommendation is still unclear. In this paper, we study this problem by proposing an untargeted attack called UA-FedRec. By exploiting the prior knowledge of news recommendation and federated learning, UA-FedRec can effectively degrade the model performance with a small percentage of malicious clients. First, the effectiveness of news recommendation highly depends on user modeling and news modeling. We design a news similarity perturbation method to make representations of similar news farther and those of dissimilar news closer to interrupt news modeling, and propose a user model perturbation method to make malicious user updates in opposite directions of benign updates to interrupt user modeling. Second, updates from different clients are typically aggregated by weighted-averaging based on their sample sizes. We propose a quantity perturbation method to enlarge sample sizes of malicious clients in a reasonable range to amplify the impact of malicious updates. Extensive experiments on two real-world datasets show that UA-FedRec can effectively degrade the accuracy of existing federated news recommendation methods, even when defense is applied. Our study reveals a critical security issue in existing federated news recommendation systems and calls for research efforts to address the issue.


翻译:暂无翻译

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月29日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员