Color consistency correction for color point clouds is a fundamental yet important task in 3D rendering and compression applications. In the past, most previous color correction methods aimed at correcting color for color images. The purpose of this paper is to propose a grouping-based hybrid color correction algorithm for color point clouds. Our algorithm begins by estimating the overlapping rate between the aligned source and target point clouds, and then adaptively partitions the target points into two groups, namely the close proximity group Gcl and the moderate proximity group Gmod, or three groups, namely Gcl, Gmod, and the distant proximity group Gdist, when the estimated overlapping rate is low or high, respectively. To correct color for target points in Gcl, a K-nearest neighbors based bilateral interpolation (KBI) method is proposed. To correct color for target points in Gmod, a joint KBI and the histogram equalization (JKHE) method is proposed. For target points in Gdist, a histogram equalization (HE) method is proposed for color correction. Finally, we discuss the grouping-effect free property and the ablation study in our algorithm. The desired color consistency correction benefit of our algorithm has been justified through 1086 testing color point cloud pairs against the state-of-the-art methods. The C++ source code of our algorithm can be accessed from the website: https://github.com/ivpml84079/Point-cloud-color-correction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员