Timing information leakage occurs whenever an attacker successfully deduces confidential internal information by observing some timed information such as events with timestamps. Timed automata are an extension of finite-state automata with a set of clocks evolving linearly and that can be tested or reset, making this formalism able to reason on systems involving concurrency and timing constraints. In this paper, we summarize a recent line of works using timed automata as the input formalism, in which we assume that the attacker has access (only) to the system execution time. First, we address the following execution-time opacity problem: given a timed system modeled by a timed automaton, given a secret location and a final location, synthesize the execution times from the initial location to the final location for which one cannot deduce whether the secret location was visited. This means that for any such execution time, the system is opaque: either the final location is not reachable, or it is reachable with that execution time for both a run visiting and a run not visiting the secret location. We also address the full execution-time opacity problem, asking whether the system is opaque for all execution times; we also study a weak counterpart. Second, we add timing parameters, which are a way to configure a system: we identify a subclass of parametric timed automata with some decidability results. In addition, we devise a semi-algorithm for synthesizing timing parameter valuations guaranteeing that the resulting system is opaque. Third, we report on problems when the secret has itself an expiration date, thus defining expiring execution-time opacity problems. We finally show that our method can also apply to program analysis with configurable internal timings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员