Fault cause identification in automated manufacturing lines is challenging due to the system's complexity, frequent reconfigurations, and the limited reusability of existing Failure Mode and Effects Analysis (FMEA) knowledge. Although FMEA worksheets contain valuable expert insights, their reuse across heterogeneous lines is hindered by natural language variability, inconsistent terminology, and process differences. To address these limitations, this study proposes a process-aware framework that enhances FMEA reusability by combining manufacturing-domain conceptualization with graph neural network (GNN) reasoning. First, FMEA worksheets from multiple manufacturing lines are transformed into a unified knowledge graph through ontology-guided large language model (LLM) extraction, capturing domain concepts such as actions, states, components, and parameters. Second, a Relational Graph Convolutional Network (RGCN) with the process-aware scoring function learns embeddings that respect both semantic relationships and sequential process flows. Finally, link prediction is employed to infer and rank candidate fault causes consistent with the target line's process flow. A case study on automotive pressure sensor assembly lines demonstrates that the proposed method outperforms a state-of-the-art retrieval-augmented generation (RAG) baseline (F1@20 = 0.267) and an RGCN approach (0.400), achieving the best performance (0.523) in fault cause identification. Ablation studies confirm the contributions of both LLM-driven domain conceptualization and process-aware learning. These results indicate that the proposed framework significantly improves the transferability of FMEA knowledge across heterogeneous lines, thereby supporting operators in diagnosing failures more reliably and paving the way for future domain-adaptive LLM applications in smart manufacturing.
翻译:暂无翻译