The remaining useful life (RUL) estimation is an important metric that helps in condition-based maintenance. Damage data obtained from the diagnostics techniques are often noisy and the RUL estimated by calibrating the parameters of the physics-based predictive model with the damage data is less reliable. Estimating the probabilistic RUL by quantifying the uncertainty in the predictive model parameters using the noisy data increases confidence in the predicted values. Uncertainty quantification methods generate statistical samples for the model parameters, that represent the uncertainty, by evaluating the predictive model several times. The computational time for solving a physics-based predictive model is significant, which makes the statistical techniques that enable probabilistic RUL estimation to be computationally expensive. It is essential to reduce the computational time for RUL so that RUL can be estimated in a feasible time. In this work, real-time probabilistic RUL estimation is demonstrated in adhesively bonded joints using the Sequential Monte Carlo (SMC) sampling method and cloud-based computations. The SMC sampling method is an alternative to traditional MCMC methods, which enables generating of statical parameter samples in parallel. The parallel computational capabilities of the SMC methods are exploited by running the SMC simulation on multiple cloud calls. This approach is demonstrated by estimating fatigue RUL in the adhesively bonded joint. The accuracy of probabilistic RUL estimated by SMC is validated by comparing it with RUL estimated by the MCMC and the experimental values. The SMC simulation is run on the cloud and the computational speedup of the SMC is demonstrated.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员