A Bayes point machine is a single classifier that approximates the majority decision of an ensemble of classifiers. This paper observes that kernel interpolation is a Bayes point machine for Gaussian process classification. This observation facilitates the transfer of results from both ensemble theory as well as an area of convex geometry known as Brunn-Minkowski theory to derive PAC-Bayes risk bounds for kernel interpolation. Since large margin, infinite width neural networks are kernel interpolators, the paper's findings may help to explain generalisation in neural networks more broadly. Supporting this idea, the paper finds evidence that large margin, finite width neural networks behave like Bayes point machines too.


翻译:贝耶斯点机器是一个单一的分类器,它与一组分类器的多数决定相近。 本文指出,内核内插是戈西亚过程分类的贝耶斯点机器。 这一观察有助于将共性理论和被称为布伦-明科夫斯基理论的convex几何学领域的结果转换为PAC-Bayes风险界限。 由于大边缘,无限宽神经网络是内核内插器,因此,该文件的调查结果可能有助于更广泛地解释神经网络的概括性。 支持这一想法的论文发现,大边缘、有限宽度神经网络也像拜斯点机器一样。

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员