We present efficient algorithms for Quantile Join Queries, abbreviated as %JQ. A %JQ asks for the answer at a specified relative position (e.g., 50% for the median) under some ordering over the answers to a Join Query (JQ). Our goal is to avoid materializing the set of all join answers, and to achieve quasilinear time in the size of the database, regardless of the total number of answers. A recent dichotomy result rules out the existence of such an algorithm for a general family of queries and orders. Specifically, for acyclic JQs without self-joins, the problem becomes intractable for ordering by sum whenever we join more than two relations (and these joins are not trivial intersections). Moreover, even for basic ranking functions beyond sum, such as min or max over different attributes, so far it is not known whether there is any nontrivial tractable %JQ. In this work, we develop a new approach to solving %JQ. Our solution uses two subroutines: The first one needs to select what we call a "pivot answer". The second subroutine partitions the space of query answers according to this pivot, and continues searching in one partition that is represented as new %JQ over a new database. For pivot selection, we develop an algorithm that works for a large class of ranking functions that are appropriately monotone. The second subroutine requires a customized construction for the specific ranking function at hand. We show the benefit and generality of our approach by using it to establish several new complexity results. First, we prove the tractability of min and max for all acyclic JQs, thereby resolving the above question. Second, we extend the previous %JQ dichotomy for sum to all partial sums. Third, we handle the intractable cases of sum by devising a deterministic approximation scheme that applies to every acyclic JQ.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月17日
Arxiv
0+阅读 · 2023年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员