Detecting Parkinson's Disease in its early stages using EEG data presents a significant challenge. This paper introduces a novel approach, representing EEG data as a 15-variate series of bandpower and peak frequency values/coefficients. The hypothesis is that this representation captures essential information from the noisy EEG signal, improving disease detection. Statistical features extracted from this representation are utilised as input for interpretable machine learning models, specifically Decision Tree and AdaBoost classifiers. Our classification pipeline is deployed within our proposed framework which enables high-importance data types and brain regions for classification to be identified. Interestingly, our analysis reveals that while there is no significant regional importance, the N1 sleep data type exhibits statistically significant predictive power (p < 0.01) for early-stage Parkinson's Disease classification. AdaBoost classifiers trained on the N1 data type consistently outperform baseline models, achieving over 80% accuracy and recall. Our classification pipeline statistically significantly outperforms baseline models indicating that the model has acquired useful information. Paired with the interpretability (ability to view feature importance's) of our pipeline this enables us to generate meaningful insights into the classification of early stage Parkinson's with our N1 models. In Future, these models could be deployed in the real world - the results presented in this paper indicate that more than 3 in 4 early-stage Parkinson's cases would be captured with our pipeline.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员