For a finite collection of connected graphs $\mathcal{F}$, the $\mathcal{F}$-MINOR-DELETION problem consists in, given a graph $G$ and an integer $\ell$, deciding whether $G$ contains a vertex set of size at most $\ell$ whose removal results in an $\mathcal{F}$-minor-free graph. We lift the existence of (approximate) polynomial kernels for $\mathcal{F}$-MINOR-DELETION by the solution size to (approximate) polynomial kernels parameterized by the vertex-deletion distance to graphs of bounded elimination distance to $\mathcal{F}$-minor-free graphs. This results in exact polynomial kernels for every family $\mathcal{F}$ that contains a planar graph, and an approximate polynomial kernel for PLANAR VERTEX DELETION. Moreover, combining our result with a previous lower bound, we obtain the following infinite set of dichotomies, assuming $NP \not\subseteq coNP/poly$: for any finite set $\mathcal{F}$ of biconnected graphs on at least three vertices containing a planar graph, and any minor-closed class of graphs $\mathcal{C}$, $\mathcal{F}$-MINOR-DELETION admits a polynomial kernel parameterized by the vertex-deletion distance to $\mathcal{C}$ if and only if $\mathcal{C}$ has bounded elimination distance to $\mathcal{F}$-minor-free graphs. For instance, this yields dichotomies for CACTUS VERTEX DELETION, OUTERPLANAR VERTEX DELETION, and TREEWIDTH-$t$ VERTEX DELETION for every integer $t \geq 0$. Prior to our work, such dichotomies were only known for the particular cases of VERTEX COVER and FEEDBACK VERTEX SET. Our approach builds on the techniques developed by Jansen and Pieterse [Theor. Comput. Sci. 2020] and also uses adaptations of some of the results by Jansen, de Kroon, and Wlodarczyk [STOC 2021].


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员