Protein language models (LMs) have been successful in sequence, structural and functional predictions. However, currently, protein LMs are limited to encoder- or decoder-only architectures for single sequences while many biological contexts involve protein-protein interactions. Here, we introduce pAbT5, which models antibody chain pairing as forward- and back-translations using a T5-based architecture. We show that pAbT5 accurately reflects chain pairing through sequence generation. Our protein LM generates variable-length sequences and its next-word prediction probability agrees with position-specific scoring matrix from sequence alignment. Like other works in protein LM, pAbT5 performs state-of-the-art unsupervised prediction on experimental measurements. To the best of our knowledge, pAbT5 is the first generative encoder-decoder protein LM for protein-protein interactions.


翻译:

0
下载
关闭预览

相关内容

用蛋白语言模型改进蛋白复合物预测
专知会员服务
10+阅读 · 2022年9月25日
基于几何结构预训练的蛋白质表征学习
专知会员服务
15+阅读 · 2022年8月21日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员