A recent line of work has studied the relationship between the Wishart matrix $X^\top X$, where $X\in \mathbb{R}^{d\times n}$ has i.i.d. standard Gaussian entries, and the corresponding Gaussian matrix with independent entries above the diagonal. Jiang and Li (2015) and Bubeck et al. (2016) showed that these two matrix ensembles converge in total variation whenever $d/n^3\to \infty$, and Bubeck et al. (2016) showed this to be sharp. In this paper we aim to identify the precise threshold for $d$ in terms of $n$ for subsets of Wishart matrices to converge in total variation to independent Gaussians. It turns out that the combinatorial structure of the revealed entries, viewed as the adjacency matrix of a graph $G$, characterizes the distance from fully independent. Specifically, we show that the threshold for $d$ depends on the number of various small subgraphs in $G$. So, even when the number of revealed entries is fixed, the threshold can vary wildly depending on their configuration. Convergence of masked Wishart to independent Gaussians thus inherently involves an interplay between both probabilistic and combinatorial phenomena. Our results determine the sharp threshold for a large family of $G$, including Erd\H{o}s-R\'enyi $G\sim \mathcal{G}(n,p)$ at all values $p\gtrsim n^{-2}\mathrm{polylog}(n)$. Our proof techniques are both combinatorial and information theoretic, which together allow us to carefully unravel the dependencies in the masked Wishart ensemble.


翻译:最近的一行工作研究了Wishart 矩阵 $X{{{top{tor_x$}{trial_xin\trial_tal_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Top
微信扫码咨询专知VIP会员