Defining pathologies automatically from medical images aids the understanding of the emergence and progression of diseases, and such an ability is crucial in clinical diagnostics. However, existing deep learning models heavily rely on expert annotations and lack generalization capabilities in open clinical environments. In this study, we present a generalizable vision-language pre-training model for Annotation-Free pathological lesions Localization (AFLoc). The core strength of AFLoc lies in its extensive multi-level semantic structure-based contrastive learning, which comprehensively aligns multi-granularity medical concepts from reports with abundant image features, to adapt to the diverse expressions of pathologies and unseen pathologies without the reliance on image annotations from experts. We demonstrate the proof of concept on CXR images, with extensive experimental validation across 4 distinct external datasets, encompassing 11 types of chest pathologies. The results demonstrate that AFLoc surpasses state-of-the-art methods in pathological lesions localization and disease classification, and even outperforms the human benchmark in locating 5 different pathologies. Additionally, we further verify its generalization ability by applying it to retinal fundus images. Our approach showcases AFoc versatilities and underscores its suitability for clinical diagnoses in complex clinical environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月3日
VIP会员
Top
微信扫码咨询专知VIP会员