We present a simplified exposition of some pieces of [Gily\'en, Su, Low, and Wiebe, STOC'19, arXiv:1806.01838], which introduced a quantum singular value transformation (QSVT) framework for applying polynomial functions to block-encoded matrices. The QSVT framework has garnered substantial recent interest from the quantum algorithms community, as it was demonstrated by [GSLW19] to encapsulate many existing algorithms naturally phrased as an application of a matrix function. First, we posit that the lifting of quantum singular processing (QSP) to QSVT is better viewed not through Jordan's lemma (as was suggested by [GSLW19]) but as an application of the cosine-sine decomposition, which can be thought of as a more explicit and stronger version of Jordan's lemma. Second, we demonstrate that the constructions of bounded polynomial approximations given in [GSLW19], which use a variety of ad hoc approaches drawing from Fourier analysis, Chebyshev series, and Taylor series, can be unified under the framework of truncation of Chebyshev series, and indeed, can in large part be matched via a bounded variant of a standard meta-theorem from [Trefethen, 2013]. We hope this work finds use to the community as a companion guide for understanding and applying the powerful framework of [GSLW19].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月12日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员