The paper introduces a novel non-parametric Riemannian regression method using Isometric Riemannian Manifolds (IRMs). The proposed technique, Intrinsic Local Polynomial Regression on IRMs (ILPR-IRMs), enables global data mapping between Riemannian manifolds while preserving underlying geometries. The ILPR method is generalized to handle multivariate covariates on any Riemannian manifold and isometry. Specifically, for manifolds equipped with Euclidean Pullback Metrics (EPMs), a closed analytical formula is derived for the multivariate ILPR (ILPR-EPM). Asymptotic statistical properties of the ILPR-EPM for the multivariate local linear case are established, including a formula for the asymptotic bias, establishing estimator consistency. The paper showcases possible applications of the method by focusing on a group of Riemannian metrics on the Symmetric Positive Definite (SPD) manifold, which arises in machine learning and neuroscience. It is demonstrated that several metrics on the SPD manifold are EPMs, resulting in a closed analytical expression for the multivariate ILPR estimator on the SPD manifold. The paper evaluates the ILPR estimator's performance under two specific EPMs, Log-Cholesky and Log-Euclidean, on simulated data on the SPD manifold and compares it with extrinsic LPR using the Affine-Invariant when scaling the manifold and covariate dimension. The results show that the ILPR using the Log-Cholesky metric is computationally faster and provides a better trade-off between error and time than other metrics. Finally, the Log-Cholesky metric on the SPD manifold is employed to implement an efficient and intrinsic version of Rie-SNE for visualizing high-dimensional SPD data. The code for implementing ILPR-EPMs and other relevant calculations is available on the GitHub page.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员