Bayes factors are an increasingly popular tool for indexing evidence from experiments. For two competing population models, the Bayes factor reflects the relative likelihood of observing some data under one model compared to the other. In general, computing a Bayes factor is difficult, because computing the marginal likelihood of each model requires integrating the product of the likelihood and a prior distribution on the population parameter(s). In this paper, we develop a new analytic formula for computing Bayes factors directly from minimal summary statistics in repeated-measures designs. This work is an improvement on previous methods for computing Bayes factors from summary statistics (e.g., the BIC method), which produce Bayes factors that violate the Sellke upper bound of evidence for smaller sample sizes. The new approach taken in this paper extends requires knowing only the $F$-statistic and degrees of freedom, both of which are commonly reported in most empirical work. In addition to providing computational examples, we report a simulation study that benchmarks the new formula against other methods for computing Bayes factors in repeated-measures designs. Our new method provides an easy way for researchers to compute Bayes factors directly from a minimal set of summary statistics, allowing users to index the evidential value of their own data, as well as data reported in published studies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月8日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员