Supercomputers getting ever larger and energy-efficient is at odds with the reliability of the used hardware. Thus, the time intervals between component failures are decreasing. Contrarily, the latencies for individual operations of coarse-grained big-data tools grow with the number of processors. To overcome the resulting scalability limit, we need to go beyond the current practice of interoperation checkpointing. We give first results on how to achieve this for the popular MapReduce framework where huge multisets are processed by user-defined mapping and reducing functions. We observe that the full state of a MapReduce algorithm is described by its network communication. We present a low-overhead technique with no additional work during fault-free execution and the negligible expected relative communication overhead of $1/(p-1)$ on $p$ PEs. Recovery takes approximately the time of processing $1/p$ of the data on the surviving PEs. We achieve this by backing up self-messages and locally storing all messages sent through the network on the sending and receiving PEs until the next round of global communication. A prototypical implementation already indicates low overhead $<4\,\%$ during fault-free execution.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
14+阅读 · 2020年9月1日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
14+阅读 · 2020年9月1日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员