Machine unlearning seeks to efficiently remove the influence of selected data while preserving generalization. Significant progress has been made in low dimensions $(p \ll n)$, but high dimensions pose serious theoretical challenges as standard optimization assumptions of $\Omega(1)$ strong convexity and $O(1)$ smoothness of the per-example loss $f$ rarely hold simultaneously in proportional regimes $(p\sim n)$. In this work, we introduce $\varepsilon$-Gaussian certifiability, a canonical and robust notion well-suited to high-dimensional regimes, that optimally captures a broad class of noise adding mechanisms. Then we theoretically analyze the performance of a widely used unlearning algorithm based on one step of the Newton method in the high-dimensional setting described above. Our analysis shows that a single Newton step, followed by a well-calibrated Gaussian noise, is sufficient to achieve both privacy and accuracy in this setting. This result stands in sharp contrast to the only prior work that analyzes machine unlearning in high dimensions \citet{zou2025certified}, which relaxes some of the standard optimization assumptions for high-dimensional applicability, but operates under the notion of $\varepsilon$-certifiability. That work concludes %that a single Newton step is insufficient even for removing a single data point, and that at least two steps are required to ensure both privacy and accuracy. Our result leads us to conclude that the discrepancy in the number of steps arises because of the sub optimality of the notion of $\varepsilon$-certifiability and its incompatibility with noise adding mechanisms, which $\varepsilon$-Gaussian certifiability is able to overcome optimally.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员