Accurate macroeconomic forecasting has become harder amid geopolitical disruptions, policy reversals, and volatile financial markets. Conventional vector autoregressions (VARs) overfit in high dimensional settings, while threshold VARs struggle with time varying interdependencies and complex parameter structures. We address these limitations by extending the Sims Zha Bayesian VAR with exogenous variables (SZBVARx) to incorporate domain-informed shrinkage and four newspaper based uncertainty shocks such as economic policy uncertainty, geopolitical risk, US equity market volatility, and US monetary policy uncertainty. The framework improves structural interpretability, mitigates dimensionality, and imposes empirically guided regularization. Using G7 data, we study spillovers from uncertainty shocks to five core variables (unemployment, real broad effective exchange rates, short term rates, oil prices, and CPI inflation), combining wavelet coherence (time frequency dynamics) with nonlinear local projections (state dependent impulse responses). Out-of-sample results at 12 and 24 month horizons show that SZBVARx outperforms 14 benchmarks, including classical VARs and leading machine learning models, as confirmed by Murphy difference diagrams, multivariate Diebold Mariano tests, and Giacomini White predictability tests. Credible Bayesian prediction intervals deliver robust uncertainty quantification for scenario analysis and risk management. The proposed SZBVARx offers G7 policymakers a transparent, well calibrated tool for modern macroeconomic forecasting under pervasive uncertainty.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员